Technician License Course Chapter 3.1 Electricity, Components and Circuits

Lesson Plan Module 5

Larry Hall KD0RIU

Fundamentals of Electricity

- When dealing with electricity, what we are referring to is **the flow of electrons through a conductor**.
 - Electrons are negatively charged atomic particles.
 - The opposite charge is the positive charge (holes)
 - A conductor is a material that allows electrons to move with relative freedom within the material.

Fundamentals of Electricity

- In electronics and radio, we control the flow of electrons to make things happen.
- You need to have a basic understanding of how and why we control the flow of electrons so that you can better operate your radio.

Basic Characteristics of Electricity

- There are three characteristics of electricity:
 - Voltage
 - Current
 - Resistance
- All three must be present for electrons to flow.

Basic Characteristics of Electricity

 The flow of water through a hose is a good analogy to understand the three characteristics of electricity and how they are related.

Characteristics of Electricity are Inter-related

- Voltage, current and resistance must be present to have current flow.
- Just like water flowing through a hose, changes in voltage, current and resistance affect each other.
- That effect is mathematically expressed in **Ohm's Law**.

The Electric Circuit: An Electronic Roadmap

- For current to flow, there must be a path from one side of the source of the current to the other side of the source this **path is called a circuit**.
 - There must be a hose (conductive path) through which the water (current) can flow.
- The following are some vocabulary words that help describe an electronic circuit.

Series Circuits

• Series circuits provide one and only one path for current flow.

Parallel Circuits

• **Parallel circuits** provide alternative paths for current flow.

Ohm's Law

- E is voltage - Units - volts
- I is current - Units - amperes
- R is resistance - Units - ohms
- R = E/I
- I = E/R
- $E = I \times R$
- **E** / (**I x R**) = 1

Moving Electrons Doing Something Useful

- Any time energy is expended to do something, work is performed.
- When moving electrons do some work, power is consumed.
- Power is measured in the units of watts (W).

Power Formula

- Power is defined as the amount of current that is being pushed through a conductor or device to do work.
 - $-P = E \times I$
 - -E = P/I
 - -I = P/E
 - $-P/(E \times I) = 1$

Two Basic Kinds of Current

- When current flows in only one direction, it is called direct current (dc).
 - Batteries are a common source of dc.
 - Most electronic devices are powered by dc.
- When **current flows alternatively** in one direction then in the opposite direction, it is called **alternating current (ac)**.
 - Your household current is ac.

What term describes the number of times per second that an alternating current reverses direction? (T3B02)

- * A. Pulse rate
- * B. Speed
- * C. Wavelength
- * D. Frequency

What term describes the number of times per second that an alternating current reverses direction? (T3B02)

- * A. Pulse rate
- * B. Speed
- * C. Wavelength
- * **D. Frequency**

Electrical current is measured in which of the following units? (T5A01)

- * A. Volts
- * B. Watts
- * C. Ohms
- * D. Amperes

Electrical current is measured in which of the following units? (T5A01)

- * A. Volts
- * B. Watts
- * C. Ohms
- *** D. Amperes**

Electrical power is measured in which of the following units? (T5A02)

- * A. Volts
- * B. Watts
- * C. Ohms
- * D. Amperes

Electrical power is measured in which of the following units? (T5A02)

- * A. Volts
- * B. Watts
- * C. Ohms
- * D. Amperes

What is the name for the flow of electrons in an electric circuit? (T5A03)

- * A. Voltage
- * B. Resistance
- * C. Capacitance
- * D. Current

What is the name for the flow of electrons in an electric circuit? (T5A03)

- * A. Voltage
- * B. Resistance
- * C. Capacitance
- * D. Current

What is the name for a current that flows only in one direction? (T5A04)

- * A. Alternating current
- * B. Direct current
- * C. Normal current
- * D. Smooth current

What is the name for a current that flows only in one direction? (T5A04)

- * A. Alternating current
- *** B. Direct current**
- * C. Normal current
- * D. Smooth current

What is the electrical term for an electromotive force (EMF) that causes electron flow? (T5A05)

- * A. Voltage
- * B. Ampere-hours
- * C. Capacitance
- * D. Inductance

What is the electrical term for an electromotive force (EMF) that causes electron flow? (T5A05)

* A. Voltage

- * B. Ampere-hours
- * C. Capacitance
- * D. Inductance

Which of the following is a good electrical conductor? (T5A07)

- * A. Glass
- * B. Wood
- * C. Copper
- * D. Rubber

Which of the following is a good electrical conductor? (T5A07)

- * A. Glass
- * B. Wood
- * C. Copper
- * D. Rubber

Which of the following is a good electrical insulator? (T5A08)

- * A. Copper
- * B. Glass
- * C. Aluminum
- * D. Mercury

Which of the following is a good electrical insulator? (T5A08)

- * A. Copper
- * B. Glass
- * C. Aluminum
- * D. Mercury

What is the name for a current that reverses direction on a regular basis? (T5A09)

- * A. Alternating current
- * B. Direct current
- * C. Circular current
- * D. Vertical current

What is the name for a current that reverses direction on a regular basis? (T5A09)

* A. Alternating current

- * B. Direct current
- * C. Circular current
- * D. Vertical current

Which term describes the rate at which electrical energy is used? (T5A10)

- * A. Resistance
- * B. Current
- * C. Power
- * D. Voltage

Which term describes the rate at which electrical energy is used? (T5A10)

- * A. Resistance
- * B. Current
- * C. Power
- * D. Voltage

What is the basic unit of electromotive force? (T5A11)

- * A. The volt
- * B. The watt
- * C. The ampere
- * D. The ohm

What is the basic unit of electromotive force? (T5A11)

- * A. The volt
- * B. The watt
- * C. The ampere
- * D. The ohm

What is the formula used to calculate electrical power in a DC circuit? (T5C08)

- * A. Power (P) equals voltage (E) multiplied by current (I)
- * B. Power (P) equals voltage (E) divided by current (I)
- * C. Power (P) equals voltage (E) minus current (I)
- * D. Power (P) equals voltage (E) plus current (I)

What is the formula used to calculate electrical power in a DC circuit? (T5C08)

- * A. Power (P) equals voltage (E) multiplied by current (I)
- * B. Power (P) equals voltage (E) divided by current (I)
- * C. Power (P) equals voltage (E) minus current (I)
- * D. Power (P) equals voltage (E) plus current (I)

What formula is used to calculate current in a circuit? (T5D01)

- * A. Current (I) equals voltage (E) multiplied by resistance (R)
- * B. Current (I) equals voltage (E) divided by resistance (R)
- * C. Current (I) equals voltage (E) added to resistance (R)
- * D. Current (I) equals voltage (E) minus resistance (R)

What formula is used to calculate current in a circuit? (T5D01)

- * A. Current (I) equals voltage (E) multiplied by resistance (R)
- * B. Current (I) equals voltage (E) divided by resistance (R)
- * C. Current (I) equals voltage (E) added to resistance (R)
- * D. Current (I) equals voltage (E) minus resistance (R)

What formula is used to calculate voltage in a circuit? (T5D02)

- * A. Voltage (E) equals current (I) multiplied by resistance (R)
- * B. Voltage (E) equals current (I) divided by resistance (R)
- * C. Voltage (E) equals current (I) added to resistance (R)
- * D. Voltage (E) equals current (I) minus resistance (R)

What formula is used to calculate voltage in a circuit? (T5D02)

- * A. Voltage (E) equals current (I) multiplied by resistance (R)
- * B. Voltage (E) equals current (I) divided by resistance (R)
- * C. Voltage (E) equals current (I) added to resistance (R)
- * D. Voltage (E) equals current (I) minus resistance (R)

What formula is used to calculate resistance in a circuit? (T5D03)

- * A. Resistance (R) equals voltage (E) multiplied by current (I)
- * B. Resistance (R) equals voltage (E) divided by current (I)
- * C. Resistance (R) equals voltage (E) added to current (I)
- * D. Resistance (R) equals voltage (E) minus current (I)

What formula is used to calculate resistance in a circuit? (T5D03)

- * A. Resistance (R) equals voltage (E) multiplied by current (I)
- * B. Resistance (R) equals voltage (E) divided by current (I)
- * C. Resistance (R) equals voltage (E) added to current (I)
- * D. Resistance (R) equals voltage (E) minus current (I)

Which instrument would you use to measure electric potential or electromotive force? (T7D01)

- * A. An ammeter
- * B. A voltmeter
- * C. A wavemeter
- * D. An ohmmeter

Which instrument would you use to measure electric potential or electromotive force? (T7D01)

- * A. An ammeter
- * **B. A voltmeter**
- * C. A wavemeter
- * D. An ohmmeter

What is the correct way to connect a voltmeter to a circuit? (T7D02)

- * A. In series with the circuit
- * B. In parallel with the circuit
- * C. In quadrature with the circuit
- * D. In phase with the circuit

What is the correct way to connect a voltmeter to a circuit? (T7D02)

- * A. In series with the circuit
- *** B. In parallel with the circuit**
- * C. In quadrature with the circuit
- * D. In phase with the circuit

How is an ammeter usually connected to a circuit? (T7D03)

- * A. In series with the circuit
- * B. In parallel with the circuit
- * C. In quadrature with the circuit
- * D. In phase with the circuit

How is an ammeter usually connected to a circuit? (T7D03)

* A. In series with the circuit

- * B. In parallel with the circuit
- * C. In quadrature with the circuit
- * D. In phase with the circuit

Which instrument is used to measure electric current? (T7D04)

- * A. An ohmmeter
- * B. A wavemeter
- * C. A voltmeter
- * D. An ammeter

Which instrument is used to measure electric current? (T7D04)

- * A. An ohmmeter
- * B. A wavemeter
- * C. A voltmeter
- * D. An ammeter

What instrument is used to measure resistance? (T7D05)

- * A. An oscilloscope
- * B. A spectrum analyzer
- * C. A noise bridge
- * D. An ohmmeter

What instrument is used to measure resistance? (T7D05)

- * A. An oscilloscope
- * B. A spectrum analyzer
- * C. A noise bridge
- * D. An ohmmeter

Which of the following might damage a multimeter? (T7D06)

- * A. Measuring a voltage too small for the chosen scale
- B. Leaving the meter in the milliamps position overnight
- * C. Attempting to measure voltage when using the resistance setting
- * D. Not allowing it to warm up properly

Which of the following might damage a multimeter? (T7D06)

- * A. Measuring a voltage too small for the chosen scale
- B. Leaving the meter in the milliamps position overnight
- C. Attempting to measure voltage when using the resistance setting
- * D. Not allowing it to warm up properly

Which of the following measurements are commonly made using a multimeter? (T7D07)

- * A. SWR and RF power
- * B. Signal strength and noise
- * C. Impedance and reactance
- * D. Voltage and resistance

Which of the following measurements are commonly made using a multimeter? (T7D07)

- * A. SWR and RF power
- * B. Signal strength and noise
- * C. Impedance and reactance
- *** D. Voltage and resistance**

What is probably happening when an ohmmeter, connected across a circuit, initially indicates a low resistance and then shows increasing resistance with time? (T7D10)

- * A. The ohmmeter is defective
- * B. The circuit contains a large capacitor
- * C. The circuit contains a large inductor
- * D. The circuit is a relaxation oscillator

What is probably happening when an ohmmeter, connected across a circuit, initially indicates a low resistance and then shows increasing resistance with time? (T7D10)

- * A. The ohmmeter is defective
- *** B.** The circuit contains a large capacitor
- * C. The circuit contains a large inductor
- * D. The circuit is a relaxation oscillator

Which of the following precautions should be taken when measuring circuit resistance with an ohmmeter? (T7D11)

- * A. Ensure that the applied voltages are correct
- * B. Ensure that the circuit is not powered
- * C. Ensure that the circuit is grounded
- * D. Ensure that the circuit is operating at the correct frequency

Which of the following precautions should be taken when measuring circuit resistance with an ohmmeter? (T7D11)

- * A. Ensure that the applied voltages are correct
- *** B. Ensure that the circuit is not powered**
- * C. Ensure that the circuit is grounded
- * D. Ensure that the circuit is operating at the correct frequency